
Model Driven Architectures and UML Performance Modeling Capability – Design
and Usage

Leonard Weinberg, Harald Pschunder, and Michael Stebnisky

Lockheed Martin MS&S
Phone: 856-722-2078

Email Address: Leonard.Weinberg@lmco.com

Both the commercial and the military markets are being driven by performance requirements that
far exceed the capabilities of a minimum set of computing architectures. In addition, the
requirements on many newer systems are being expressed in UML, a requirements modeling
language that enforces standard and consistent practices for systems and software engineering
design. There is a need to justify the computing architecture designs, and to estimate the
computing architecture performance for these systems. Spreadsheets and analytical methods alone
are insufficient because of the statistical nature of both the messaging and the computer operating
systems. This paper describes a performance modeling tool that uses an event driven design to
enable evaluation of the performance of computing architectures for which the requirements are
expressed in UML.

There are many computer architecture performance modeling tools on the market. However, most
tools are limited in one or more of three areas: 1-a tool may operate at a very low component
level making it difficult for the system engineers to use it; 2-a tool may lack a user-friendly
graphical front end, making it difficult for a designer to share the modeling tool design and model
results with system engineers and customers not intimately familiar with the tool; and 3-a tool
may lack any compatibility with UML requirements driven methodologies. The performance
modeling capability described in this paper overcomes these three limitations, while providing a
robust means for estimating the suitability of UML requirements being implemented in a
computing architecture.

Before we began to design the performance modeling tool, we established three goals. First, we
required the ability to predict the best design for a computing architecture that achieves
satisfactory performance. Second, we sought compatibility with object oriented analysis and
design methods, like UML, while not precluding other approaches. Third, we wanted an open
front end that would make the tool directly accessible not only to modelers, but to system
engineers, software designer, and even customers.

For the last eight years, our team has been evaluating the performance of computing architectures
performing critical military applications. We have been using the BONeS event driven modeling
tool. In our opinion this tool far exceeded others on the market because of the low component
level available which allows us to emulate computer operations. BONeS has been discontinued,
and we are currently using a Lockheed Martin product called CSIM. While BONeS and CSIM
both provide the lower level component capability to emulate computer operations at reasonable
level of detail, these tools can also be daunting in the amount of detail that must be specified.

In order to raise the level of detail in the model design and to speed models construction, we have
introduced Infrastructure/Architecture Assemblies. (This addresses model limitation Point-1
above.) An Assembly represents message flows through internet protocols, middleware, and the

mailto:Leonard.Weinberg@lmco.com

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Model Driven Architectures and UML Performance Modeling Capability
Design and Usage

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Lockheed Martin Maritime Systems & Sensors, Moorestown, New Jersey

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance Embedded
Computing (HPEC) Workshops, 28-30 September 2004. , The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

20

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

components. Assemblies are chosen and connected in tandem to represent sequential message
flows in a UML sequence diagram. If there are ten messages in a sequence diagram, then the
appropriate ten Assemblies are chosen and connected together. Our Assembly design is a perfect
match to the messages in a sequence diagram. (This addresses model limitation Point-3 above.)

In our work, four basic Assembly types have been satisfactory in representing message flows.
The four types of Assemblies represent: messages entering a computer and being processed in a
component, messages being processed by a component and leaving a computer, messages
beginning within a computer and entering another component in the same computer to be
processed, and messages entering a computer to be processed and then exiting the computer. The
“personality” of each Assembly is specified by completing about ten menu-based parameters.
These parameters consist of: Infrastructure/Architecture Assembly type; scenario and message
information; message acknowledgement on/off; component application processing time;
component application priority; node assignment; and possibly network switch port connectivity.

We estimate the time to build a model using Infrastructure/Architecture Assemblies at
approximately 15% of what was typically required for model development "from scratch”. A
typical Assembly consists of about 40 elementary component modeling blocks and 25 default
parameters settings. The design and setting the default parameters are performed one time. Each
time the Assembly is instantiated typically only 10 parameters are re-set.

Recently, we have developed an export utility that extracts requirements developed using UML-
based commercial tools. The extracted UML requirements information is used to support
performance modeling, and introduces a user friendly interface to the model design. (This
addresses model limitation Point-2 above.) We have also written a CSIM utility that makes
available selected UML sequence diagram flows and generates a partially completed spreadsheet
containing the architecture details for the model. UML message requirements appear in the
spreadsheet. Other message attributes are added by the system engineering and computer
programmers. A completed spreadsheet can be made into a static model of the system, which
estimates minimum message latencies and contention-free CPU utilizations. UML requirements
which we extract for the spreadsheet are: message flows present in the UML sequence diagrams;
UML activity diagrams to help in selecting the appropriate sequences; and node allocation
information from the UML deployment diagrams.

A critical and special feature supported by our modeling tool CSIM is the ability to build the
performance model one sequence diagram at a time, each independent of the other sequences.
Contention among the messages for the limited CPU resources is managed by the scheduling rules
we apply to the CPU resource model. Both real time priority driven preemptive scheduling and
non-preemptive time-share scheduling have been modeled.

From the point of view of the software designer, our modeling trade studies attempt to minimize
the number of computing resources, while providing for long term system growth and meeting
critical message latency requirements under full scenario conditions. Models are run under
realistic computer program priority assignments, and use benchmark estimates for the computing
platform protocol stacks, middleware and application software. One class of exciting results
generated from our simulations is process timelines. These are similar to sequence diagrams but
they include the message latencies due to the CPU and network contentions.

2

90104 P-04-0454 Weinberg- 1

Model Driven Architectures and
UML Performance Modeling

Capability – Design and Usage

Harald Pschunder and Leonard Weinberg
Lockheed Martin Maritime Systems &
Sensors, Moorestown, New Jersey

Michael Stebnisky
Lockheed Martin Advanced Technology
Laboratory, Cherry Hill, New Jersey

Presented at: HPEC 2004

September 30, 2004

90104 P-04-0454 Weinberg- 2

Introduction – Why is this
Capability Important

Lockheed Martin has more than 30 years experience in designing and
building computing systems for U.S. Navy cruisers and destroyers

Systems are large and demanding (12,000,000 SLOC in >50 computers)
−Many use real-time O/S
−Computer utilization >50 %;
−Message latencies in the milliseconds
−Automatic reconfiguration within seconds of failure

Over the last eight years, event driven computing system architecture
models have helped shape the computer program designs and to predict
and map their performance on target systems

For our next generation systems, we have begun development of the
architectures using UML to analyze and document requirements

For the future, we need to build a framework which makes it possible to
quickly estimate and predict the dynamic performance of our future UML
designed systems, and share these results with our technical community

90104 P-04-0454 Weinberg- 3

Typical Computing Architecture
Components and Communications

Engagement
Component

Missile-i
Component

Missile-j
Component

Missile-k
Component

Missile-l
Component

Missile-m
Component

Missile-n
Component

Middle
-ware

P
R
O
T
O
C
O
L

P
R
O
T
O
C
O
L

P
R
O
T
O
C
O
LRouting

Server

Node 1 Node 2

Node 3

Network
Switch

Middle
-ware

Middle
-ware

90104 P-04-0454 Weinberg- 4

Capability of Our Performance Model

Speeds and automates the design of performance modeling using pre-
designed, off-the-shelf, large infrastructure components (modeling assemblies)

− Eight general-purpose Infrastructure Modeling Assemblies (IMAs)
were built to emulate any message’s creation, flow and processing

− The specific “personality” assumed by an IMA in a particular model is
specified by completing approximately ten menu-based parameters

− Assemblies are chosen and connected to represent any message flow

Complies with the UML requirements modeling language
− Our newly designed Export Conversion Program captures selected

requirements and architectural information from the UML requirements
models

Incorporates a friendly front end, useable by the model designer, the system
engineer and the customer

− Sequence diagrams and spreadsheets provide the user with copies of UML
requirements to build or view the performance model

− The spreadsheet calculator also generates an estimate of model utilization
and latency to help verify the performance model design

Lockheed Martin Uses the CSIM Modeling ToolLockheed Martin Uses the CSIM Modeling Tool

90104 P-04-0454 Weinberg- 5

Typical Performance Modeling Results

Performance Results

10
20
30
40
50
60
70
80
90

450500550600650700750800850900950100010501100115012001250
0

*

Track Rate (tracks per second)

A
ve

ra
ge

 C
PU

 U
til

iz
at

io
n

Performance Results
Scheduling & Timing Information

Simulated Process Timeline Instability Exhibited During Simulation

90104 P-04-0454 Weinberg- 6

Building and Executing Performance
Models Using CSIM

CSIM GUI for Model Building .sim

Develop Computing
Architecture Model

Visual
Information

Spreadsheet
Information

.dfg file

.csv file/Excel

Call Tabs

CSIM GUI

Sequence
Diagrams

Architecture
Spreadsheet

Export
Program

Utility
.cat file/Rose

UML
Files

• UML System
Requirements

• Architectural Details
• UML Modifications

Run Simulation,
Review Results

Simview & XgraphCSIM

Evaluate,
Predict &

Recommend

Select
Modeling

Assemblies

11
22

33

44

55

66
77 88

90104 P-04-0454 Weinberg- 7

∆ 5

∆4

T5

T4

T3

∆2

T2

Scheduler A B D E F

1.Launch (Now)
2.Launch

Launch

Missile Away (Time)3.Launch
Time and
Direction

4.Launch
Report
(Status)

7.Guidance Information
8.Uplink

9.Downlink

11.Status

12.Reservation
Request

13.Reservation

15.Search

14.Illuminate
Target (Now)

Illuminate Target (Now)

5.Request
Missile Data

16.Search

C

10.Downlink

6.Request
Missile Data

Msg Rate:
Msg Items:
Msg Size:
Sched mthd:
Ack:
Proc Time:
Node:

Msg Rate:
Msg Items:
Msg Size:
Sched mthd:
Ack:
Proc Time:
Node:

Sensor

Intercept

∆3

MW
MW

MW

MW

MW

MW

MW

MW

MW

MW

MW

MW

Post
Launch

Example: UML Sequence Diagram with
Added Architecture Detail

90104 P-04-0454 Weinberg- 8

Architectural Information Used by
the Performance Models

Node Identification

Sources and Destinations

Message Name and Routing

Message Size and Rate

Message Acknowledgment

Application Processing Time and Priority

Software Component Scheduling Method: Real-time,
Timeshare, FIFO

etc

App A

90104 P-04-0454 Weinberg- 9

Node 1 Node 2 Node 1 Node 1

SW SW

•Infrastructure flow
between applications:

•Operations on the sequence diagram:

A
Node 1

C
Node 2

B

Node 1

A

Node 1

Operation1 Operation2 Operation3

•Model flow:

Output IMA Thruput IMA Input IMA Stayput IMA

App C App B App A

Me Message 2

Sequence Diagram Flows can be Interpreted in
Terms of Infrastructure Modeling Assemblies (IMAs)

Message 3ssage 1

SW SW

SW Network Switch

Middleware &/or internet protocol

90104 P-04-0454 Weinberg- 10

An Infrastructure Modeling Assembly (IMA)
The IMA is a model of a reasonably large infrastructure assembly,
representing the processing flow initiated by the transmission of a
single message
− It may include processing by an application, middleware, and

other infrastructure components and be governed by internet
protocol, priority and scheduling rules

− The IMA is built around a CPU-like resource allowing parametric
control of such activities as scheduling, context switching,
priority levels, managing queues, internal processing, and
message input /output

IMAs simplify building the performance model
−We reuse these IMAs and give individual instances ‘personality’

by inserting a small number of menu-driven parameters to
provide their architectural information

−By connecting these IMAs, we emulate a Sequence Diagram of
any complexity

− Each sequence is built separately, and is independent of others
until they are combined at simulation run time

We Use CMIS, a Lockheed Martin EventWe Use CMIS, a Lockheed Martin Event--Driven Simulation ToolDriven Simulation Tool

90104 P-04-0454 Weinberg- 11

The Savings When Using IMAs

Experience indicates the large savings possible by modeling
with and re-using Infrastructure Modeling Assemblies
− For example, the Input IMA contains

~ 40 elementary blocks assembled once
~ 25 default parameters set once when built
~ 10 parameters set each re-use

90104 P-04-0454 Weinberg- 12

Architecture
Performance

Results

Infrastructure
Assemblies
combined to

represent
Computing
Architecture

From UML Requirements to
Computing Architecture Performance

UML
Export

Program

Sequences

Activities

Deployment

•Sequence
Diagram
Modified

•Architecture
Information

Added

90104 P-04-0454 Weinberg-1

Model Driven Architectures and
UML Performance Modeling

Capability – Design and Usage

Harald Pschunder and Leonard Weinberg
Lockheed Martin Maritime Systems &
Sensors, Moorestown, New Jersey

Michael Stebnisky
Lockheed Martin Advanced Technology
Laboratory, Cherry Hill, New Jersey

Presented at: HPEC 2004

September 30, 2004

90104 P-04-0454 Weinberg- 2

∆ 5

∆4

T5

T4

T3

∆2

T2

Scheduler A B D E F

1.Launch (Now)
2.Launch

Launch

Missile Away (Time)3.Launch
Time and
Direction

4.Launch
Report
(Status)

7.Guidance Information
8.Uplink

9.Downlink

11.Status

12.Reservation
Request

13.Reservation

15.Search

14.Illuminate
Target (Now)

Illuminate Target (Now)

5.Request
Missile Data

16.Search

C

10.Downlink

6.Request
Missile Data

Msg Rate:
Msg Items:
Msg Size:
Sched mthd:
Ack:
Proc Time:
Node:

Msg Rate:
Msg Items:
Msg Size:
Sched mthd:
Ack:
Proc Time:
Node:

Sensor

Intercept

∆3

MW
MW

MW

MW

MW

MW

MW

MW

MW

MW

MW

MW

Post
Launch

Example: UML Sequence Diagram with
Added Architecture Detail

App A

90104 P-04-0454 Weinberg- 3

Node 1 Node 2 Node 1 Node 1

SW SW

•Infrastructure flow
between applications:

•Operations on the sequence diagram:

A
Node 1

C
Node 2

B

Node 1

A

Node 1

Operation1 Operation2 Operation3

•Model flow:

Output IMA Thruput IMA Input IMA Stayput IMA

App C App B App A

Me Message 2

Sequence Diagram Flows can be Interpreted in
Terms of Infrastructure Modeling Assemblies (IMAs)

Message 3ssage 1

SW SW

SW Network Switch

Middleware &/or internet protocol

90104 P-04-0454 Weinberg- 4

Building and Executing Performance
Models Using CSIM

CSIM GUI for Model Building .sim

Develop Computing
Architecture Model

Visual
Information

Spreadsheet
Information

.dfg file

.csv file/Calc

Call Tabs

CSIM GUI

Sequence
Diagrams

Architecture
Spreadsheet

Export
Program

Utility

.cat file/Rose

UML
Files

• UML System
Requirements

• Architectural Details
• UML Modifications

Run Simulation,
Review Results

Simview & XgraphCSIM

Evaluate,
Predict &

Recommend

Select
Modeling

Assemblies

11
22

33

44

55

66
77 88

	weinberg_poster.pdf
	Introduction – Why is this Capability Important
	Typical Computing Architecture Components and Communications
	Capability of Our Performance Model
	Typical Performance Modeling Results
	Example: UML Sequence Diagram with Added Architecture Detail
	Architectural Information Used by the Performance Models
	

	weinberg_precis.pdf
	Model Driven Architectures and UML Performance Modeling Capability – Design and Usage
	Example: UML Sequence Diagram with Added Architecture Detail

	Precis:
	Abstract:
	Agend:
	Poster:
	Agenda:

